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1 Introduction

Climate change is frequently described as an existential threat. This view, however, stands

in stark contrast to empirical estimates of the impact of climate change on economic activ-

ity, which imply that a 1°C rise in the world’s temperature reduces world output at most

by 1-3%. Under any conventional discounting, such effects seem hardly catastrophic.

Why are perceptions of climate change misaligned with empirical estimates? Do existing

estimates account for the full impact of climate change? Are the costs of climate change

truly so small?

In this paper, we reconcile both views and demonstrate that the macroeconomic im-

pacts of climate change are six times larger than previously documented. We reach this

conclusion in two steps. First, we rely on a time-series local projection approach to es-

timate the impact of global temperature shocks on Gross Domestic Product (GDP). This

approach exploits natural variability in global mean temperature—the source of variation

closest to climate change—which we show to predict extreme climatic events much more

strongly than country-level temperature. We find that a 1°C rise in global temperature

lowers world GDP by 12% at peak. Second, we use our reduced-form results to estimate

structural damage functions in a simple neoclassical growth model. We find that climate

change leads to a present value welfare loss of 31% and a Social Cost of Carbon (SCC) of

$1,056 per ton of carbon dioxide (tCO2).

In the first part of the paper, we develop our time-series approach. Our first contri-

bution is to assemble a new climate-economy dataset spannng the last 120 years from

sources that are regularly updated and thus allows us to estimate impacts up to recent

years. We construct global and country-level measures from high-resolution gridded land

and ocean surface air temperature data from Berkeley Earth and combine them with gran-

ular reanalysis measures of extreme temperature, wind speed and precipitation from the

Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). We obtain economic data

on GDP, population, consumption, investment and productivity from the Penn World Ta-

bles spanning 173 countries from 1960 onwards and combine them with data from the

Jordà-Schularick-Taylor Macrohistory database for select countries since 1900.

To estimate the causal effects of temperature on GDP, we construct global and local

1



(country-level) temperature shocks. Identification is complicated by the trending behav-

ior of GDP and temperature. Our approach isolates innovations to the temperature pro-

cess that are orthogonal to their long-run trends and persist for up to two years using the

approach in Hamilton (2018).

Our choice of period is motivated by the geoscience literature. Natural climate vari-

ability is driven by multiple phenomena. External causes such as solar cycles and volcanic

eruptions lead to medium- and short-run fluctuations in the Earth’s mean temperature.

Internal climate variability—interactions within the climatic system itself—lead to irreg-

ular fluctuations in temperature and weather extremes. For instance, the El Niño-La Niña

cycle varies unpredictably between 2 to 7 years.

We map out the dynamic causal effects of our global temperature shocks on world

GDP using local projections from 1960 onwards. A 1°C innovation to global mean tem-

peratures leads to a gradual decline in world GDP that peaks at 12% after 6 years and

does not fully mean-revert even 10 years after the shock.

There are four possible threats to the causal interpretation of our headline results. We

address each of them in a series of robustness exercises. First, global temperature shocks

may coincide with the global economic and financial cycle. We account for this possibility

by controlling for rich measures of world economic performance: indicators for global

economic downturns (such as the major oil shocks in the 1970s or the Great Recession)

and global macro-financial variables (past world real GDP, commodity prices and interest

rates). Our results remain unaffected.

Second, reverse causality may affect our main output estimate. As output declines fol-

lowing an increase in global mean temperature, energy consumption drops, Greenhouse

Gas (GHG) emissions fall, lowering temperatures and ultimately increasing output going

forward. Thus, if anything, reverse causality leads us to qualitatively underestimate the

true impact of a global temperature shock. In addition, quantitatively, reverse causality

is likely to be negligible: for any plausible climate sensitivity, the temperature impact of

short-run fluctuations in emissions is small relative to typical global temperature shocks.

We confirm these arguments by explicitly adjusting for the lagged impact of past emis-

sions and find virtually identical results.

Third, our estimated output response may be specific to a particular period of time.

2



We test whether this is the case by estimating our specification on three separate time

frames: 1900-2019, 1960-2019—our main sample—and 1985-2019. We find remarkably

similar estimates in all three samples.

Fourth, global temperature shocks may be driven by some countries more than others,

and these countries may also have systematically higher or lower GDP growth for unre-

lated reasons. We account for this possibility by projecting country-level GDP—rather

than global GDP—on global temperature. We then control for country fixed effects and

region-specific time trends, but, crucially, no time fixed effects to identify the average im-

pact of global temperature. We obtain virtually identical results across all specifications.

Taken collectively, our robustness exercises ultimately support the view that our specifi-

cation captures the causal effect of global temperature shocks on economic activity.

Our estimated effect of temperature shocks on world GDP stands in stark contrast to

existing estimates of the cost of climate change. Nordhaus (1992), Dell et al. (2012), Burke

et al. (2015) and Nath et al. (2023) find that a 1°C temperature shock reduces GDP by at

most 1-3% in the medium run. Why do we find dramatically larger effects?

Our estimate is six times larger than in previous work because we focus on a different

source of temperature variation, one that captures the comprehensive impact of climate

change: changes in global mean temperature. By contrast, previous work exploits vari-

ation in country-level, local temperatures. It turns out that global temperature has much

more pronounced impacts on economic activity than local temperature. When we esti-

mate the impact of local temperature on country-level GDP, based on the same empirical

specification and using the same approach to construct temperature shocks, we find sim-

ilarly small effects to previous studies. Econometrically, previous work that exploits local

temperature in a panel setting nets out common impacts of global temperature shocks

through time fixed effects. Instead, we focus on these common impacts.

Why, then, does global temperature depress economic ativity so much more than local

temperature? We uncover a novel relationship that rationalizes this difference. Global

temperature shocks predict a large and persistent rise in extreme climatic events that

cause economic damage: extreme temperature, extreme wind, and extreme precipitation

(Deschênes and Greenstone, 2011; Hsiang and Jina, 2014; Bilal and Rossi-Hansberg, 2023).

By contrast, local temperature shocks predict a much weaker rise in extreme temperature,
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and barely any rise in extreme wind speed and precipitation. This conclusion is consis-

tent with the geoscience literature: extreme wind and precipitation are outcomes of the

global climate that depend on ocean temperatures and atmospheric humidity throughout

the globe, rather than outcomes of idiosyncratic local temperature realizations.

Consistently with heterogeneous exposure to extreme events, we find suggestive evi-

dence that the impact of global temperature shocks on country-level GDP varies by base-

line temperature. Warmer countries are more severely affected than cold countries, while

high-income and low-income countries experience similar effects. However, these com-

parisons are imprecisely estimated and should be interpreted with some caution.

In the second part of the paper, we develop a simple neoclassical growth model to

translate our reduced-form estimates into welfare effects. Our model extends the eco-

nomic block of the Dynamic Integrated Climate Economy (DICE) model of Nordhaus

(1992) to include capital depreciation damages in addition to productivity damages from

global temperature. Critically however, we use our novel reduced-form effects to obtain

new structural damage function estimates.

We recover the underlying productivity and capital depreciation shocks that corre-

spond to a global temperature shock by inverting their mapping to the estimated impulse

response function of output and capital. Our framework is simple enough that this map-

ping has a closed-form expression that guarantees identification. In doing so, we also

account for the own internal persistence of global mean temperature. Specifically, we use

the approach in Sims (1986) to construct the empirical response to a fully transitory tem-

perature shock as our estimation target. We purposefully remain conservative and use a

specification with persistent level effects rather than growth effects. We find that a one-

time transitory 1°C rise in global mean temperature leads to a 2.5% peak productivity

decline and a 0.3 percentage point (p.p.) peak rise in the capital depreciation rate. These

effects gradually vanish but, consistently with our persistent impacts on extreme events,

persist for nearly 10 years.

With the estimated model at hand, our main counterfactual is a gradual increase in

global mean temperature that starts in 2024 and reaches 3°C above pre-industrial levels

by 2100—so 2°C above 2024 temperatures—with a 2% discount rate. Climate change

implies precipitous declines in output, capital and consumption that exceed 50% by 2100.
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These changes imply a 31% welfare loss in permanent consumption equivalent in 2024,

that grows to nearly 52% by 2100. These magnitudes are comparable to the economic

damage caused by fighting a war domestically and permanently. Our results also indicate

that world GDP per capita would be 37% higher today had no warming occurred between

1960 and 2019 instead of the 0.75°C observed increase in global mean temperature.

The estimated model lets us characterize the SCC. We follow Folini et al. (2024) and

use the temperature response of global mean temperature to a CO2 pulse from Dietz et

al. (2021) to map welfare losses into the SCC while remaining consistent with state-of-

the-art atmospheric circulation models. We purposefully remain conservative and use the

lower end of the range of temperature responses from Dietz et al. (2021), which are also

consistent with historical emissions and warming data.

We obtain a SCC of $1,056/tCO2. This value is six times larger than the high end of

existing estimates (Rennert et al., 2022). We construct bootstrapped confidence intervals

around welfare impacts and the SCC. The 68% confidence interval for the SCC ranges

from $723/tCO2 to $1,451/tCO2. While the range of plausible values is thus non-trivial,

even the lower bound of that confidence interval is multiple times larger than conven-

tional SCC estimates.

Our focus on global temperature shocks accounts for the bulk of this substantial dif-

ference. When we re-estimate our model based on the impact of local temperature shocks

on productivity only as in previous research, the welfare cost of climate change is 4% and

the SCC is $151/tCO2. By contrast, the impact of gobal temperature on productivity only

implies a welfare loss of 24% and a SCC of $833/tCO2. Including damages to capital

depreciation further increases these values to our main results.

How sensitive are these results to changes in the discount rate and the warming sce-

nario? Any plausible discount rate and 2100 temperature leads to welfare losses in excess

of 20% and a SCC above $500/tCO2. Discount rates below 1% lead to the SCC exceeding

$3,000/tCO2. Pessimistic scenarios with 2100 warming reaching 5°C above pre-industrial

levels imply welfare losses larger than 60%.

We conclude by delineating the consequences of our results for decarbonization pol-

icy. Many decarbonization interventions cost between $27 and $95 per ton of CO2 abated

(Bistline et al., 2023). A conventional SCC value of $151/tCO2 implies that these policies
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are cost-effective only if governments internalize benefits to the entire world, as captured

by the SCC. However, a government that only internalizes domestic benefits values de-

carbonization benefits using a Domestic Cost of Carbon (DCC). The DCC is always lower

than the SCC because damages to a single country are lower than at a global scale. For

instance, under conventional estimates based on local shocks, the DCC of the United

States is $30/tCO2, making unilateral emissions reduction prohibitively expensive. Un-

der our new estimates however, the DCC of the United States becomes $211/tCO2 and

thus largely exceeds policy costs. In that case, unilateral decarbonization policy becomes

cost-effective for the United States.

Related literature. Our paper relates to the vast literature that measures economic dam-

ages from climate change. The canonical approach exploits variation in weather outcomes

over time within a given spatial area to estimate the effects of local temperature on eco-

nomic outcomes in a panel structure to achieve credible identification (see Dell et al., 2014

for a comprehensive review; and Dell et al., 2012; Burke et al., 2015; Newell et al., 2021

among many others). Nath et al. (2023) clarify how to translate short-run weather ef-

fects to long-run counterfactuals by distinguishing between the polar cases of transitory

(“level”) effects, or permanent (“growth”) effects of temperature on GDP. Consistently

across all these studies, medium-term effects range from 1% to 3% of GDP and rely exclu-

sively on climatic variation within country or even smaller geographic units.

Our paper contributes to this literature by taking a fundamentally different approach:

we directly exploit aggregate time-series variation in global mean temperature to capture

climate change as closely as possible, instead of relying on within-country climatic varia-

tion that nets out common effects of global temperature. We obtain substantial damages

associated with climate change despite using a conservative specification with persistent

level effects rather than growth effects, similarly to Nath et al. (2023).

Perhaps surprisingly, few studies have explored time-series variation in temperature.

Bansal and Ochoa (2011) find that the contemporaneous effect of a 1°C global tempera-

ture increase is to reduce growth by 1 percentage point. We show that accounting for the

persistence of this response is crucial: the peak effect occurs six years out and is twelve

times larger than the contemporaneous impact. Perhaps closest to our paper, Berg et al.
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(2023) analyze the effects of global and idiosyncratic temperature shocks on GDP dis-

persion across countries. By contrast, our paper provides the first direct estimate of the

aggregate impact of global mean temperature shocks. It is the relevant object to construct

the SCC and is much more precisely estimated than individual country-level responses.

Crucially, we use our macroeconomic estimates in a structural model to evaluate welfare

losses and the SCC, and reconcile panel and time-series estimates by documenting the

differential impact of global and local temperature shocks on extreme events.

As a result, our paper also contributes to the literature studying the economic impact

of storms and heatwaves (Barro, 2006; Deschênes and Greenstone, 2011; Deryugina, 2013;

Hsiang and Jina, 2014; Bilal and Rossi-Hansberg, 2023; Phan and Schwartzman, 2023;

Tran and Wilson, 2023). We provide new evidence on the relationship between global

temperature and extreme climatic events.

Our paper also connects to the literature assessing the welfare implications of cli-

mate change using Integrated Assessment Models surveyed in Nordhaus (2013). Re-

cent work develops “bottom-up” models featuring rich regional heterogeneity, migration

(Desmet and Rossi-Hansberg, 2015; Desmet et al., 2021; Cruz and Rossi-Hansberg, 2023;

Rudik et al., 2022; Conte et al., 2022) and capital investment (Krusell and Smith, 2022;

Bilal and Rossi-Hansberg, 2023) to match micro-level estimates and aggregate using the

model. Our paper takes the reverse “top-down” approach: directly estimate and match

the macroeconomic impact of changes in global temperature. Of course, our analysis

remains necessarily silent about distributional effects.

Finally, our paper informs the long-lasting debate about whether Integrated Assess-

ment Models are well-suited to represent the cost of climate change (Nordhaus, 2013;

Stern et al., 2022). Our paper demonstrates that these models have historically delivered

small costs of climate change not so much because they relied on incomplete foundations,

but instead because they were calibrated to economic damages that did not represent the

full impact of climate change.

Outline. The rest of this paper is organized as follows. Section 2 describes the data

and estimates the macroeconomic effects of temperature shocks using our time series

approach. Section 3 investigates how the effects of global and local temperature com-
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pare. Section 4 introduces our dynamic model and describes our structural estimation

approach. Section 5 evaluates the welfare implications of climate change. Section 6 con-

cludes.

2 Global Temperature and Economic Growth

Climate change originates with a rise in global mean temperature. This change in global

temperature affects the Earth’s climate system as a whole—causing changes in weather

patterns, ocean currents and atmospheric conditions, which in turn influence the fre-

quency, intensity, and distribution of extreme weather events globally. Thus, we focus

on the fundamental variability in global temperature to analyze the full impact of climate

change on the world economy.

2.1 A Novel Climate-Economy Dataset

Our starting point is to construct a dataset covering 173 countries over the last 120 years

to study the effects of temperature on the economy. We use world aggregates from this

dataset in this section, and country-level outcomes in Section 3 below.

We obtain temperature data from the Berkeley Earth Surface Temperature Database.

It provides temperature anomaly data at a spatial resolution of 1◦ × 1◦ of latitude and

longitude. Based on this gridded data, we construct population- and area-weighted tem-

perature measures at the country level. We complement these local temperature mea-

sures with global mean temperature data from the National Oceanic and Atmospheric

Administration (NOAA). As expected, aggregating the Berkeley Earth data to obtain a

global temperature measure produces a series that is virtually perfectly correlated with

the NOAA data series.

We rely on data from ISIMIP for information on extreme weather events. ISIMIP pro-

vides global, high-frequency datasets that record multiple atmospheric variables over the

20th and early 21st centuries. We use ISIMIP’s observed climate dataset. It contains daily

reanalysis measures of temperature, wind speed and precipitation, spanning the period

1901-2019 at the 0.5◦ × 0.5◦ resolution. Based on this data, we compute indices of ex-
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treme weather by recording the fraction of days within a country that experience extreme

weather. We define extreme weather of each category as a realization above a fixed per-

centile of the daily weather distribution in 1901-1930 (for more details, see Appendix A.1).

We combine our climate dataset with economic information on GDP, population, con-

sumption, investment, and productivity. We obtain a high-quality dataset for a compre-

hensive selection of countries around the world from the Penn World Tables. We also rely

on data from the World Bank as an alternative. Given that both datasets only go back

to the 1950s or 1960s, we also include data from the Jordà-Schularick-Taylor Macrohis-

tory database, which features high-quality economic data for a selection of high-income

countries starting in the late 19th century.

2.2 Global Temperature Shocks

How does global temperature affect economic growth? Figure 1 displays the evolution

of global average temperature and world real GDP per capital since the post-World War

II era in our dataset. In the mid-1950s to the mid-1970s, global average temperature re-

mained relatively stable at around 14°C. However, from the late 1970s onward, global

average temperature began to steadily rise again. At the same time, we observe relatively

stable economic growth over the entire sample.

Figure 1: Global Average Temperature and Output Since 1950
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The trending behavior of the two series in Figure 1 complicates the identification of

the economic effects of temperature increases. A simple regression of global GDP on

temperature will yield a spuriously positive association between the two variables, as

economic growth is associated with higher GHG emissions which eventually translates

into higher temperature. Therefore, we do not focus on the level of temperature as the

treatment in our projections, but instead focus on so-called temperature shocks. We define

such shocks as potentially persistent deviations from the long-run trend in global mean

temperature.

What drives these variations in temperature around the trend? The geoscience litera-

ture indicates two types of causes. First, external causes such as solar cycles and volcanic

eruptions lead to short-run fluctuations in the Earth’s mean temperature. Solar cycles

have a typical period of 10 years and can warm the Earth by as much as 0.1°C (National

Oceanic and Atmospheric Administration, 2009). Volcanic eruptions have shorter-lived

cooling effects of up to 2 years due to sulphuric aerosols that increase albedo (National

Oceanic and Atmospheric Administration, 2005). Second, internal climate variability—

interactions within the climatic system itself that lead to irregularly recurring events—

also affects temperatures. For instance, the El Niño-La Niña cycle varies unpredictably

between 2 to 7 years and substantially affects global mean temperatures and weather ex-

tremes (Kaufmann et al., 2006; National Oceanic and Atmospheric Administration, 2023).

An important question is how to isolate the trend and transient components of tem-

perature. To estimate the effects of temperature on future economic outcomes, it is critical

to preserve the causality—in a time-series sense—of the data: we cannot rely on future

values of temperature to identify the trend in the current period. In addition, the physical

properties of natural climate variability require to allow for somewhat persistent devia-

tions from trend.

One approach that satisfies our needs along both these dimensions is the method pro-

posed by Hamilton (2018). The idea is to regress temperature h periods out on some

of its lags as of period t and construct the temperature shock as the innovation in this

regression:

T̂shock
t+h = Tt+h − (α̂ + β̂1Tt + . . . + β̂p+1Tt−p), (1)

where β̂i denotes the coefficient estimates of the regression of temperature on its lag i.
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This exercise amounts to isolating shocks that persist typically for h periods. Selecting

the horizon h is of course a crucial choice. Motivated by the fact that the climatic events

that we consider can last for up to several years, we select a horizon of h = 2 and set

the number of lags to p = 2 in our main specification. However, our results are virtually

unchanged when we vary these values. In particular, the results are robust to identifying

temperature shocks as one-step ahead forecast errors—an approach that is commonly

used in the literature. We compare our approach to other ways of measuring the transient

component in temperature in the robustness section below and in Appendix A.4.

Figure 2: Global Temperature Shock
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Notes: The figure shows the global temperature shocks, computed as in Hamilton (2018) with (h = 2,
p = 2), over the post-World War II era.

Figure 2 shows the evolution of the resulting global temperature shocks over our sam-

ple of interest. As expected, the temperature shocks fluctuate around zero with an almost

equal number of positive and negative shocks. The largest temperature shocks in our

sample are around 0.3°C . The series is also weakly autocorrelated, reflecting the fact that

we allow for relatively persistent deviations from the long-run temperature trend (see Fig-

ure A.2 in the Appendix). In our empirical specification, we therefore control for lagged

temperature shocks as well; otherwise, serial correlation may bias the estimated impacts

when not properly accounted for (see Nath et al., 2023, for an extended discussion of this

point).
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2.3 The Effect of Temperature Shocks in the Time Series

The economic effects of temperature shocks may take time to materialize. Therefore, we

focus on the dynamic effects of temperature shocks up to 10 years out. Thus, we evaluate

directly the long-run effects of temperature without the stringent assumptions required to

extrapolate short-term temperature impacts. Of course, we would ideally trace out even

longer-run effects, but our limited sample period prevents us from doing so consistently.

We estimate the dynamic causal effects to global temperature shocks using local pro-

jections à la Jordà (2005). This approach involves estimating the following series of re-

gressions, one for each horizon h = 0, . . . , 10:

yt+h − yt−1 = α + θhTshock
t + x′tβ + εt+h, (2)

where yt is (log) world real GDP per capita, Tshock
t is the temperature shock and θh is the

dynamic causal effect of interest at horizon h. We refer to the dynamic causal effects up

to horizon h as the Impulse Response Function (IRF). xt is a vector of controls and εt is

a potentially serially correlated error term. To account for the serial correlation in GDP

growth and temperature shocks, we include 2 lags of real GDP growth per capita and

the global temperature shock. The confidence bands are computed based on the lag-

augmentation approach (Montiel Olea and Plagborg-Moller, 2021).1

Omitted variable bias. A first threat to identification is that global temperature inno-

vations may happen to be correlated with the global economic and financial cycle over

time. For instance, if a severe El Niño event increases global average temperature at the

same time that a global recession occurs, we will mistakenly attribute adverse economic

impacts to climatic variations.

To account for this possibility, we include rich controls of the world economic per-

formance. In particular, we control for global economic downturns, such as the large oil

1As in Nath et al. (2023), we currently do not take estimation uncertainty in the global temperature
shock into account in our baseline specification. Alternatively, we use an local projection-instrumental
variable approach, where we instrument changes in global temperature by the global temperature shock.
Using the global temperature shock as an instrumental variable yields inference that is robust to estimation
uncertainty in the shock. Reassuringly, the reduced-form and the instrumental variable approach yield very
similar results both in terms of point estimates and inference. See Appendix A.2.3 for more details.
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Figure 3: The Effect of Global Temperature Shocks on World Output
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Notes: The figure shows the impulse responses of world real GDP per capita to a global temperature shock,
estimated based on (2). The solid line is the point estimate and the dark and light shaded areas are 68 and
90% confidence bands, respectively.

shocks in the 1970s or the Great Recession, using a set of dummy variables.2 Alternatively,

we include a wider set of global macroeconomic and financial variables as additional con-

trols.

Figure 3 shows the impulse response of world real GDP per capita to a global tem-

perature shock of 1°C. The solid black lines are the point estimates and the shaded areas

are 68 and 90% confidence bands, respectively. On impact, world real GDP falls by about

2%. However, the effect builds up over time. After about 6 years, world real GDP falls

by more than 10%, and the adverse impact persists even 10 years after the shock. Our

estimate represents major economic effects: it is of the same magnitude as the growth im-

pacts that typically occur after severe banking or financial crises (Cerra and Saxena, 2008;

Reinhart and Rogoff, 2009).

On the one hand, a 1°C temperature shock is a large shock that does not occur directly

in our historical sample: we observe much smaller shocks throughout our sample. Our

2Our definition of global recession dates follows the World Bank (Kose et al., 2020). Specifically, we
focus on the following episodes: 1973-1975, 1979-1983, 1990-1992, and 2007-2009. To allow for potential
persistent effects of recessions, we also include 2 lags of the global recession indicator variable.
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estimate for a 1°C shock scales up the linear effect of these smaller shocks. In effect,

we abstract from potential non-linearities. However, in the presence of potential tipping

points, we would expect even larger effects than predicted by our linear model.

On the other hand, a 1°C change is smaller than global warming going forward. The

Intergovernmental Panel on Climate Change (IPCC) expects that under a business-as-

usual scenario, global average temperature is expected to increase by 4.4°C by 2100 (Lee

et al., 2023). We now demonstrate that our main estimate is robust to accounting for

further threats to identification.

Reverse causality. Changes in economic activity may affect short-run variations in tem-

perature: a decline in economic activity lowers emissions and temperature, and hence

increases output going forward. This mechanism leads to a reverse causality threat.

There are three reasons why this concern is unlikely to substantially affect our in-

terpretation. First, any reverse causality concern leads us to underestimate the effect of

temperature on economic output. As temperature rises and economic activity initially de-

clines, the resulting fall in emissions implies lower future temperatures and thus higher

future output. Thus, true damages would be even larger than our estimates.

Second, and perhaps most importantly, annual fluctuations in emissions imply neg-

ligible temperature variations relative to the typical temperature shocks that we exploit.

Typical year-to-year fluctuations in CO2 emissions are of the order of 2 gigatons. After ac-

counting for oceanic and biosphere absorption, these annual fluctuations translate into 1

gigaton of atmospheric CO2. This magnitude corresponds to 0.15 part per million (ppm) in

atmospheric CO2 concentration. Current CO2 atmospheric concentration is just above 400

ppm. Given a climate sensitivity between 2 and 4, year-to-year fluctuations in emissions

thus imply year-to-year fluctuations in temperature of about 0.0005°C. This is an order of

magnitude lower than natural climate variability which is of the order of 0.1°C.

Nevertheless, we perform two exercises to verify that reverse causality is unlikely to

affect our results. First, we check whether our temperature shocks are forecastable by

past macroeconomic or financial variables. To this end, we perform a series of Granger-

causality tests. We find no evidence that macroeconomic or financial variables have any

power in forecasting global temperature shocks (see Appendix A.2.1).

14



Second, we explicitly account for the feedback between output and temperature. We

use estimates for the emissions-to-GDP elasticity and the sensitivity of temperature to an

emissions impulse from Dietz et al. (2021). We then directly purge the GDP impulse re-

sponse from the dynamic effects of past emissions changes. Figure 4(a) shows the results.

Explicitly controlling for reverse causality has no meaningful effect on our results (see

Appendix A.3 for more details).

Specification choices. Our main result—a significant fall in world output after global

temperature shocks—is also robust to variations in our time-series specification. Figure 4

displays two additional sensitivity checks. First, our results are robust to changes in the

definition of global temperature shocks. Panel (b) indicates that constructing temperature

shocks as one-step ahead forecast errors following previous work (see e.g. Bansal and

Ochoa, 2011; Nath et al., 2023), or using a one-sided HP filter, produces similar results.

Second, the effect remains when we expand the set of controls. In our baseline specifi-

cation, we already control flexibly for recession periods and also include controls for past

world GDP growth. Figure 4(c) reveals that we obtain similar results if we expand the set

of controls to include global oil prices and the U.S. treasury yield. If anything, dropping

the controls for recession periods tends to mildly attenuate the effect.

Overall, these results corroborate our interpretation that global temperature shocks

are driven by external causes and internal climate variability and have a large causal

effect on world GDP. We expand more flexibly on these robustness checks in the next

section, where we study the effects of global temperature shocks in a panel of countries.

3 Temperature Shocks in the Panel of Countries

So far we have evaluated the impact of global temperature shocks directly on world GDP.

We now exploit country-level data on GDP to achieve four distinct goals. Our first goal

in Section 3.1 is to exploit the additional statistical power in the panel to further corrob-

orate our results when controlling for possibly confounding trends at the country level

and varying the span of our sample period. Our second goal in Sections 3.2 and 3.3 is

to contrast the impact of global temperature shocks with existing work that has focused
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Figure 4: Sensitivity of the Effect of Global Temperature Shocks in the Time Series

(a) Reverse causality
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(b) Construction of temperature shock
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(c) Sensitivity with respect to controls
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Notes: The figure shows the impulse responses of world real GDP per capita to a global temperature shock,
estimated based on (2). Panel (a) shows how the GDP response is affected when we formally account for
reverse causality, i.e. lower GDP leading to lower temperature, based on varying assumptions on the emis-
sions elasticity, the level of emissions and the temperature sensitivity. Panel (b) illustrates the sensitivity
with respect to the construction of the temperature shock. We compare our baseline, using the Hamilton
(2018) approach, to the more commonly used one-step ahead forecast error and a shock obtained using the
one-sided HP filter. Panel (c) shows the sensitivty with respect to the controls included. We compare our
baseline to a specification that also controls for oil prices and the one-year US treasury yield, as well as to
the case where we only control for lags of the temperature shock and GDP growth. In all subfigures, the
lines correspond to point estimate and the dark and light shaded areas are 68 and 90% confidence bands,
respectively, corresponding to our baseline specification.
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on country-level temperature shocks. Our third and fourth goals are to explore the mar-

gins through which GDP declines (Section 3.4) and the heterogeneity in country-level

responses (Section 3.5).

3.1 Global Temperature Shocks in the Panel

To estimate the dynamic causal effects of temperature shocks in the panel, we employ

the panel local projections approach (Jordà et al., 2020). In this section, we still estimate

the effect of global temperature shocks, now averaged across 173 countries. However,

the panel approach allows us to account for unobserved, time-invariant country char-

acteristics using country fixed effects. We can also control for past GDP growth at the

country level and regional trends. Specifically, we estimate the following series of panel

regressions for horizons h = 0, . . . , 10:

yi,t+h − yi,t−1 = αi + θhTshock
t + x′tβ + x′i,tγ + εi,t+h, (3)

where yi,t is (log) real GDP per capita of country i in year t, Tshock
t is the (global) temper-

ature shock and θh is the dynamic causal effect of interest at horizon h. xt is a vector of

global controls, xi,t is a vector of country-specific controls and εi,t is an error term. In our

baseline specification, we use the same set of global controls as before but in addition also

control for two lags of country-level GDP growth. We expand on these controls in further

sensitivity checks below.

Because the temperature shock Tshock
t does not vary by country, the error term is poten-

tially serially and cross-sectionally correlated. For inference, we thus rely on Driscoll and

Kraay (1998) Standard Errors (SEs), which are robust to general forms of cross-sectional

and serial dependence.3

By design, our specification is close to the specifications commonly used in the panel

literature on the economic effects of local temperature shocks (e.g. Dell et al., 2012; Burke

et al., 2015; Nath et al., 2023). Crucially however, the temperature shock Tshock
t does not

vary by country in our case. As a result, we cannot control for time fixed effects as is

3Our results are robust to using two-way clustered SEs by country and year, or using bootstrapping
techniques for inference. In fact, to construct the confidence bands for our estimated structural damage
functions in Section 4.5, we rely on the boostrapped distribution, as estimated using a Wild bootstrap.
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commonly done. Instead, we include a selection of global control variables as in our

time-series specification (1).

Figure 5 shows the impulse responses to a global temperature shock, estimated in the

panel of countries. Consistently with our aggregate time-series evidence, global temper-

ature shocks lead to a significant fall in real GDP per capita, which is slightly larger than

10% at peak and persists even 10 years out. This estimated effect is strikingly similar to

the estimates from the time series, indicating that our results are robust to accounting for

unobserved fixed country characteristics.

Figure 5: The Average Effect of Global Temperature Shocks
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Notes: The figure shows the impulse responses of real GDP per capita to a global temperature shock,
estimated in the panel using (3). The solid black line is the point estimate and the dark and light shaded
areas are 68 and 90% confidence bands, respectively. The dashed red line is the aggregate effect of global
temperature shocks on world GDP, estimated from the time series.

The increased statistical power in the panel lets us conduct a number of additional

sensitivity checks. Our first sensitivity check evaluates whether our results depend on

the choice of the sample period. Figure 6 displays our results. In Panel (a), the sample

starts after the large oil shocks of the 1970s. We obtain remarkably similar results in

this substantially shortened sample period. In Panel (b), we study the effects of global

temperature shocks in a much longer sample, starting in 1900. For this analysis, we rely

on a smaller set of countries for which we have consistent data. We use real GDP from 18
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Figure 6: Sensitivity of the Average Effect of Global Temperature Shocks
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(b) Long sample: 1900-2019
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(c) Additional controls
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(d) Pre-trends
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Notes: The figure shows the impulse responses of real GDP per capita to a global temperature shock,
estimated in the panel using (3). The first two panels show the sensitivity to the sample period. Panel
(a) displays our estimates when the sample is restricted to the most recent period, 1985-2019. Panel (b)
presents the results when we use a longer sample starting in 1900. These results are based on a smaller set
of developed countries. Panel (c) shows the sensitivity with respect to the controls included. We compare
our baseline to a specification that controls for an expanded set of global variables, to a specification that
adds subregion-specific time trends, and to a specification that controls for 10 lags of world and country-
GDP growth. Panel (d) shows the pre-trends for our baseline response. In all subfigures, the solid line is
the point estimate and the dark and light shaded areas are 68 and 90% confidence bands, respectively.

advanced economies in the Jordà-Schularick-Taylor Macrohistory Database. In the longer

sample, global temperature shocks are also associated with a significant fall in world real

GDP: it reaches close to -15% at peak and turns out to be even more persistent than in our

baseline sample.

Our second sensitivity check includes more flexible controls for potential confound-
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ing effects. The main concern is that adverse global or regional shocks may coincide with

temperature shocks, confounding our estimates. To this end, we add global oil prices,

U.S. treasury yield, and, in our most restrictive specification, region-specific time trends.

Figure 6(c) shows that our estimates turn out to be virtually invariant to the set of controls.

To mitigate reverse causality concerns at longer horizons, we also consider a specification

where we include up to 10 lags of world and country-GDP growth as controls. In this

way, we flexibly control for potential delayed economic growth and the associated emis-

sions on temperature levels. In Appendix A.2.4, we further establish that unobserved

common shocks are not driving our results by exploiting an intermediate level of spatial

aggregation of temperature shocks. The results from this specification that allows us to

include time fixed effects turn out again to be very close to our baseline case.

Our last sensitivity check investigates whether our results may be due to pre-trends—

although Table A.1 already suggests that Granger causality is unlikely to be a concern.

Nevertheless, Figure 6(d) plots our main estimate together with estimates 6 years prior to

the global temperature shock. Note that the effect in the three years immediately before

the shock is zero by construction as we control for two lags of GDP growth. We do not

detect any statistically significant nor economically meaningful effect up to 6 years prior

to the shock. Overall, these results confirm the substantial and persistent negative effect

of global temperature shocks on real GDP.

3.2 Global vs. Local Temperature

How do these effects compare to local temperature shocks? Conventional estimates in the

literature imply that a 1°C rise in local temperature reduces GDP at most by 1-3% in the

medium run (Nordhaus, 1992; Dell et al., 2012; Burke et al., 2015; Nath et al., 2023). To

ensure that our findings are not driven by differences in the econometric specification or

data choices, we reproduce the effects of local temperature shocks within our empirical

framework.

To this end, we measure local temperature shocks using the Hamilton (2018) filter,

as we do in Section 2.2 for global temperature, but now based on population-weighted

country-level temperature data.

Figure 7 shows the local temperature shocks for the United States and South Africa

20



Figure 7: Local and Global Temperature Shocks
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Notes: The figure shows the local temperature shocks for the United States (left panel) and South Africa
(right panel) in red together with the global temperature shocks as the blue dashed line. All the shocks are
computed based on the Hamilton (2018) approach with (h = 2, p = 2), over our sample from 1960. The
local shocks are computed based on population-weighted country-level temperature data.

over our sample from 1960, as two illustrative examples. Local temperature shocks are

larger and more volatile than global temperature shocks. The standard deviation of lo-

cal shocks is about three to four times larger. Second, while local and global shocks are

correlated—the correlation is 0.33—they frequently move in different directions. Thus,

local shocks do not always translate into global shocks and vice-versa.

To estimate the responses to local shocks, we rely on our panel specification (3), with

the critical difference that the temperature shock is a country-specific temperature shock

Tshock
i,t . In this first specification, we do not include time fixed effects to maximize compa-

rability with (3) but include global controls. Alternatively, we also use a specification that

includes time fixed effects:

yi,t+h − yi,t−1 = αi + δt + θhTshock
i,t + x′i,tγ + εi,t+h, (4)

which allows us to flexibly control for unobserved common shocks. In this case, the global

controls are absorbed by the time fixed effects.

Figure 8 shows the estimated impulse responses to a local temperature shock of 1°C

as the solid red line (global controls and no time fixed effect) and the dashed brown line

(with time fixed effects). For comparison, we also include the impulse responses to a
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global temperature shock (in black). With or without time fixed effects, local temperature

shocks lead to a similar and significant fall in real GDP per capita. On impact, the effect

stands at about -0.5% and reaches around -1.5% after 5 years. These estimates are close to

previous findings in Dell et al. (2012), Burke et al. (2015), and Nath et al. (2023).

Figure 8: The Average Effect of Local Temperature Shocks
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Notes: The figure shows the impulse responses of real GDP per capita to a local temperature shock, esti-
mated in the panel using (3), (in red) against the effects of a global temperature shock (in blue). The solid
lines are the point estimates and the dark and light shaded areas and dashed and dotted lines are 68 and
90% confidence bands, respectively. As an additional comparison, we also include the response to a local
temperature shock from a specification with time fixed effects (brown dashed line).

This comparison reveals that global temperature have much more pronounced impacts

on economic activity than local temperature. The estimated effects of global temperature

shocks are about seven times larger than for local temperature shocks, based on the same

empirical model and the same sample period.

Our analysis indicates that the key difference lies in the nature of the shock itself rather

than in the set of global controls or time fixed effects. Climatic variation within country

or even smaller geographic units may alleviate identification concerns, but misses any

global effects of climate change—itself a global phenomenon. By contrast, our approach

purposefully studies these global effects by focusing on climatic variation at the global

level. We conclude that global temperature shocks lead to much larger economic effects
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than local temperature shocks.

3.3 Reconciling the Impacts of Global and Local Temperature

Why, then, does global temperature cause more economic harm than local temperature?

To shed light on this question, we study the climatic implications of local and global tem-

perature shocks. Specifically, we investigate how these shocks impact the likelihood of

extreme weather events, such as extreme temperature, extreme wind speed, and extreme

precipitation.

Figure 9 displays our results. We first study the internal persistence of local temper-

ature in response to either a global or a local temperature shock. Both global and local

shocks lead to a persistent increase in temperature and the degree of persistence is broadly

consistent across the two responses. Thus, the persistence of the shock cannot account for

the differential impacts of global and local temperature shocks on GDP. In fact, Figure

A.4 in Appendix A.2.2 shows that imposing the same internal persistence in response to

global and local temperature shocks using the Sims (1986) method produces very similar

results.

We then ask how the temperature shocks affect the occurrence of extreme weather

events, such as extreme heat, extreme precipitation, and extreme wind. Local temperature

shocks lead to an increase in the share of extreme heat days. However, global temperature

shocks lead to a substantially larger increase in extreme heat days.

The contrast is even starker for extreme precipitation and extreme wind speed: global

temperature shocks predict a large increase in their frequency, while local temperature

shocks do not. These findings are consistent with the geoscience literature: wind speed

and precipitation are outcomes of the global climate—through oceanic warming and at-

mospheric humidity—rather than outcomes of local temperature distributions. Given

that extreme climatic events are known to cause economic damage (Deschênes and Green-

stone, 2011; Hsiang and Jina, 2014; Bilal and Rossi-Hansberg, 2023), the differential ef-

fect of global versus local temperature shocks on extreme climatic events can explain the

much larger economic effects of global temperature shocks.

23



Figure 9: The Impact on Extreme Weather Events

-.5
0

.5
1

1.
5

 

0 2 4 6 8 10

Years

Global temperature shock
Local temperature shock

Local temperature

0
.0

5
.1

 

0 2 4 6 8 10

Years

Extreme heat
-.0

05
0

.0
05

.0
1

.0
15

.0
2

 

0 2 4 6 8 10

Years

Extreme precipitation

-.0
02

0
.0

02
.0

04
.0

06
.0

08

 

0 2 4 6 8 10

Years

Extreme wind

Notes: The figure shows the impulse responses of local temperature, extreme heat days, extreme precipita-
tion days, and extreme wind days to global and local temperature shocks. The extreme weather variables
record the share of days in a given year where temperature, precipitation, or wind speed are above a certain
threshold. Specifically, we use percentiles of the daily weather distribution in 1900-1910. For temperature
and precipitation, we use the 95 percentile, for wind we use the 99 percentile. To eliminate some of the
noise inherent in the extreme weather data, we smooth these measures with a backward-looking (current
and previous two years) moving average. However, our results are robust to using the raw extreme weather
data. The global shock is depicted in blue, the local shock is shown in red. In all subfigures, the solid line is
the point estimate and the dark and light shaded areas are 68 and 90% confidence bands, respectively.

3.4 Mechanisms

Through which mechanisms do global temperature shocks transmit to the world econ-

omy? We have documented that extreme events rise after such a shock, but which mar-

gins of the economy respond most? We answer these questions by evaluating the dy-

namic causal effects of global temperature shocks on economic variables such as capital,

investment and productivity in our panel of countries.
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Figure 10: Transmission of Global Temperature Shocks
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Notes: The figure shows the impulse responses of investment, the capital stock, total factor productivity
and labor productivity to a global temperature shock, estimated in the panel based on (3). Investment
and the capital stock are expressed in per capita terms. Labor productivity is measured as output over
employment. In all subfigures, the solid line is the point estimate and the dark and light shaded areas are
68 and 90% confidence bands, respectively.
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Figure 10 displays our results. Global temperature shocks lead to a substantial and

significant fall in the capital stock and in investment. The sluggish fall in the capital stock

is consistent with the adverse impact of future extreme weather events such as storms that

materialize as a sequence of capital depreciation shocks. Consistent with Hsiang and Jina

(2014), we find that disasters associated with global warming do not stimulate growth.

Instead, national income declines, productive capital dwindles and investment falls.

We also find evidence that productivity falls significantly after global temperature

shocks. This is true for Total Factor Productivity (TFP) as estimated in the Penn World

Tables and for labor productivity. The impact effect, which stands at about -2%, is consis-

tent with experimental studies on the impact of temperature on productivity (Seppanen

et al., 2003). However, these effects tend to build up over time, reaching around -10%

after about four years.

3.5 Regional Heterogeneity

We have documented that global temperature shocks lead to a substantial fall in economic

activity, on average. How are these effects distributed across countries? Are poorer coun-

tries more affected? Are the effects attenuated in countries located in colder climates?

And how do the effects vary across different regions?

We start by studying how the effects vary by average temperature and income. To

this end, we bin countries into different groups based on temperature and income data.

Specifically, we bin countries into three temperature and income groups, based on data

from 1957-1959 to ensure that group characteristics are not influenced by the effects of the

global temperature shocks.

Figure 11 displays our results. Panel (a) shows the effects to a global temperature

shock for cold countries (average temperature below 10°C), temperate climate countries

(average temperature between 10°C and 20°C) and hot countries (average temperature

above 20°C). Hot countries display the strongest adverse effects of temperature shocks.

This result is qualitatively consistent with previous evidence on local temperature shocks

(Dell et al., 2012; Burke et al., 2015; Nath, 2022). Quantitatively, global temperature shocks

have larger effects across all countries, especially for hot countries. Consistently, we find

that temperate countries also display a response that is economically large. Only for
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Figure 11: Heterogeneous Effects of Global Temperature Shocks
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(b) By income per capita
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Notes: The figure shows the impulse responses of real GDP per capita to a global temperature shock, for
different groups of countries. In Panel (a), we group countries by their average temperature in 1957-1959. In
Panel (b), we group countries by their per capita income (in PPP terms) in 1957-1959. In all subfigures, the
solid line is the point estimate and the dark and light shaded areas are 90% confidence bands, respectively.

colder countries, we observe a somewhat smaller effect that is also not statistically sig-

nificant.

Figure 11(b) shows the responses by income per capita. Specifically, we consider ef-

fects on poorer countries (real GDP per capita below 3,000 USD), middle income coun-

tries (real GDP per capita between 3,000 and 12,000 USD), and high income countries (real

GDP per capita above 12,000 USD). We find that real GDP per capita falls for all income

groups. Interestingly, however, poorer and rich countries display a comparable response.

We estimate the largest adverse effects for middle income countries, with a peak effect of

close to -20%. We caution that the relative effects of global temperature by country tem-

perature and income groups are not precisely estimated and should be interpreted with

some caution.

In Figure 12, we study the impact of global temperature shocks on different regions.

We document significantly negative effects in most regions. We estimate the strongest

negative effects in relatively hot regions such as Southeast Asia and Sub-Saharan Africa.

Contrary to local temperature shocks, we document that global temperature shocks lead

to adverse economic effects even in higher-income, colder regions. The peak effect in

North America is around -10%, and in Europe around -7%, even though the response is
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not as precisely estimated. The only region that gains from global temperature shocks

is Central and East Asia. We conjecture that this result is driven by the relatively large

number of cold countries in this region that may benefit from warmer temperatures.

Figure 12: Regional Impacts of Global Temperature Shocks
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Notes: The figure shows the impulse responses of real GDP per capita to a global temperature shock, for
different regions across the world. In all subfigures, the solid line is the point estimate and the dark and
light shaded areas are 68 and 90% confidence bands, respectively.

Our results indicate that there are meaningful differences in the effects of global tem-

perature shocks. Overall, these effects are more uniformly detrimental than for local tem-

perature shocks (see e.g. Burke et al., 2015).

So far we established the reduced-form impact of global temperature shocks on eco-

nomic activity at the world and country level. We now turn to our structural model to

convert these estimates into welfare losses and a value of the Social Cost of Carbon.
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4 A Model of Climate Change Across the World

Our framework closely follows the standard neoclassical growth model. As such, it mir-

rors the backbone of the Dynamic Integrated Climate Economy (DICE) model introduced

by Nordhaus (1992). Our key innovations are to introduce capital depreciation damages

and to use our new reduced-form estimates of the impact of global temperature shocks to

structurally estimate the damage functions in the model.

4.1 Setup

Agents and preferences. Time is continuous and runs forever. There is a unit contin-

uum of infinitely-lived identical households who populate the world economy. House-

holds have Constant Relative Risk Aversion (CRRA) flow preferences: U(C) = C1−γ−1
1−γ .

Labor supply is exogenous and set to Lt = 1. Households discount the future at rate ρ.

Technology. Firms produce according to a Cobb-Douglas production function in cap-

ital Kt and labor Lt with time-dependent TFP Zt: Yt = ZtKα
t L1−α

t . They hire labor and

rent capital from households in competitive factor markets. Production implies a time-

dependent capital depreciation rate ∆t. Firms cover depreciation. The paths of Zt, ∆t are

perfectly foreseen.

Budgets. Households earn wages wt, hold capital Kt and rent it out to firms for produc-

tion. The net interest rate is rt. Firms make zero profits given constant returns to scale, so

we omit profits in the budget constraint of the household, which writes:

Ct + K̇t = wt + rtKt.

Households are endowed with an initial capital stock K0.

Equilibrium. A competitive equilibrium of our economy is a collection of sequences

{Ct, Kt, Lt, rt, wt}∞
t=0 such that households optimize given prices {rt, wt}t:

max
{Ct,Kt}t

∫ ∞

0
e−ρtU(Ct)dt subject to Ct + K̇t = wt + rtKt given K0;
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firms optimize given prices {rt, wt}t: maxKD
t ,LD

t
Zt(KD

t )
α(LD

t )
1−α − (rt + ∆t)KD

t − wtLD
t ;

and factor markets clear: Kt = KD
t and 1 = LD

t .

4.2 Climate Change

We model climate change as changes in TFP Zt and capital depreciation ∆t over time.

We take the path of global mean temperature Tt relative to a reference level T0 as given.

Global mean temperature affects TFP and capital depreciation through structural damage

functions {ζs, δs}s≥0:

Zt = Z0 exp
(∫ t

0
ζsT̂t−sds

)
∆t = ∆0 exp

(∫ t

0
δsT̂t−sds

)
, (5)

where we denoted T̂t = Tt − T0 excess temperature relative to the reference level. Only

shocks since t = 0 affect TFP and capital depreciation.

ζs and δs govern the persistence of the effect of transitory global temperature shocks

on TFP and capital depreciation. When ζs, δs are Dirac mass points at s = 0, global

temperature shocks have purely transitory level effects. When ζs, δs are positive functions

that asymptote to zero, global temperature shocks have persistent level effects. When

ζs, δs are positive functions that asymptote to a positive value, global temperature shocks

have growth effects.

When temperature Tt ≡ T is constant, the economy converges to its steady-state with

the corresponding values of TFP and capital depreciation rate:

Z = Z0 exp
(
(T − T0)

∫ ∞

0
ζsds

)
∆ = ∆0 exp

(
(T − T0)

∫ ∞

0
δsds

)
. (6)

The steady-state expression (6) highlights that the cumulative damage functions
∫ ∞

0 ζsds

and
∫ ∞

0 δsds determine the long-run impact of global temperature changes. In that case,

we need ζs, δs to be integrable to obtain a well-defined steady-state. This requirement

rules out growth effects which would imply an economy that asymptotes to zero. In any

case, we do not find any evidence supporting growth effects.

Because we focus on climate damages, we do not model emissions and associated ex-

ternalities. Thus, the competitive equilibrium is efficient as is standard in the neoclassical

30



growth model.

4.3 The Social Cost of Carbon

In our framework, we define the Social Cost of Carbon as the one-time dollar amount C
that households would pay at time 0 that would make them indifferent between a world

with an additional ton of CO2 emitted at time 0, and a world starting in steady-state,

without emissions, but having paid C.

Given that we do not model emissions directly, we must map a one-time CO2 pulse

into a temperature path in order to calculate the SCC. We follow Folini et al. (2024) and

use the temperature response of global mean temperature to a CO2 pulse from Dietz et al.

(2021), itself based on Joos et al. (2013). Dietz et al. (2021) report the temperature response

in multiple state-of-the-art atmospheric circulation and radiative forcing models. These

temperature responses let us map welfare losses into the SCC consistently with state-of-

the-art goescience.

We denote by {T̂SCC
t }t≥0 the path of excess warming implied by a one-time pulse of a

single ton of CO2 emitted at time 0. The multi-model mean response in Dietz et al. (2021)

indicates that temperature rise steadily and approximately exponentially. Temperature

stabilizes at 0.002°C 15 years out after a short and moderate overshoot.

We purposefully remain conservative and use the lower end of the range of temperature

responses from Dietz et al. (2021): we define {T̂SCC
t }t≥0 as half of the the multi-model

mean in Dietz et al. (2021). Doing so additionally ensures that historical emissions are

consistent with historical warming data. When we use the multi-model mean, our SCC

numbers double. Our welfare numbers would remain unchanged as they do not depend

on the temperature response to a CO2 pulse.

We then construct productivity and capital depreciation paths {ZSCC
t , ∆SCC

t }t≥0 ac-

cording to equation (5) in which we use the temperature path {T̂SCC
t }t≥0 rather than a

global warming scenario. The model delivers a path of value functions {VSCC
t (K)}t≥0,

equilibrium capital stocks {KSCC
t }t≥0 with initial condition KSCC

0 = Kss, leading to a path

of realized values {VSCC
t (KSCC

t )}t≥0, in response to this CO2 pulse-induced warming.
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Our definition requires that the SCC C be defined implicitly as:

Vss(Kss − C) = VSCC
0 (Kss), (7)

where ss superscripts denote steady-state quantities.

To gain intuition, consider the case when the SCC is not too large. Then, a first order

perturbation implies that the SCC satisfies:

C =
∫ ∞

0
e−ρtu′(Css)(Css − CSCC

t )dt =
1
ρ

Css − CSCC

Css , (8)

where Css−CSCC

Css is defined as the consumption-equivalent welfare loss from the warming

implied by the CO2 pulse.

The first condition states that the SCC is the present discounted value of consumption

losses due to the warming implied by the CO2 pulse. Using the definition of consumption-

equivalent welfare losses, the second condition indicates that the SCC is equal to the

present discounted value of the consumption-equivalent welfare losses warming induced

by the CO2 pulse. While these conditions are useful to gain intuition, in our quantifica-

tion we always use the nonlinear definition (7) that accounts for a time-varying marginal

rate of substitution.

4.4 Estimation Strategy

Our next step is to estimate the structural damage functions ζs, δs. To do so, we match

the reduced-form impulse response functions of GDP and capital to global temperature

shocks from Figures 8 and 10. We proceed in two steps.

In the first step, we calibrate our model based on standard values from the literature,

with the exception of our damage functions. We set risk-aversion to γ = 2. The capital

share is α = 0.33. The baseline annual capital depreciation rate is ∆0 = 0.08. Our choice

of annual discount rate ρ = 0.02 follows Rennert et al. (2022). However, we will assess

the robustness of our results with respect to the discount rate.

In the second step, we invert our model to estimate our structural damage functions

ζs, δs: the sequence of TFP and depreciation shocks that correspond to a temperature
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shock. We leverage that the actual temperature shocks that arise during our sample are

small and therefore imply output and capital fluctuations of the order of 1% (see Figure

7). Therefore, we can use a first-order perturbation of the model around the initial steady-

state. Specifically, we consider a sequence of temperature shocks T̂t. We denote by ẑt the

resulting log deviation in TFP and by ∆̂t the resulting level deviation capital depreciation

rates. We denote by ŷt, k̂t the log deviations in output and capital along the transition.

We emphasize that we use log-linearization for estimation only, not for counterfactuals.

Proposition 1. (Model inversion)

There exists Kt(ẑ), Jt,s given in Appendix B.3 such that, to a first order in T̂t:

ŷt = ẑt + αk̂t k̂t = Kt(ẑ) +
∫ ∞

0
Jt,s∆̂sds

Proof. See Appendix B.3.

Proposition 1 delivers an identification result. Given observed output and capital re-

sponses ŷt, k̂t, we can recover the underlying sequence of productivity shocks ẑt and

capital depreciation shocks ∆̂t.

The first equation of Proposition 1 lets us recover the sequence of productivity shocks

directly from the observed output and capital responses—this relationship is immediate

from the production function.

The main content of Proposition 1 lies in the second equation. By log-linearizing the

equilibrium conditions of the model and solving explicitly for the equilibrium sequence of

capital, we relate capital deviations to the sequence of capital depreciation rates through

the sequence-space Jacobian Jt,s (Auclert et al., 2021; Bilal and Goyal, 2023) given pro-

ductivity shocks embeded in Kt(ẑ). In the context of the neoclassical growth model, we

can solve in closed form for this Jacobian as a function of parameters and steady-state

objects. When Jt,s is invertible, the capital depreciation shocks are identified. We use

Proposition 1 to obtain the sequence of TFP and depreciation rates ẑt, ∆̂t that correspond

to any sequence of temperature shocks T̂t.

We use these observations to estimate ζs, δs. However, we cannot yet directly use

the output and capital impulse response functions from Figures 8 and 10. These impulse

response functions correspond to a persistent underlying global temperature shock, i.e.
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a shock that increases global mean temperature persistently as shown in Figure 9. The

structural damage functions ζs, δs correspond to the impact of a transitory temperature

shock. This observation is critical: omitting to account for the internal persistence of

the temperature shock would overstate the impact of global warming (Nath et al., 2023).

Thus, we deconvolute the data before using Proposition 1.

We construct the impulse response function to a one-time transitory temperature

shock with linear combinations of the impulse response function to the observed, persis-

tent temperature shock. This approach follows Sims (1986). It is equivalent to using a re-

cursive approach. Indeed, denote by ỹt the unknown impulse response function of output

to a transitory temperature shock. In discrete data and under linearity: ŷt = ∑t
s=0 T̂t−sỹs.

We then obtain ỹt =
(

ŷt − ∑t−1
s=0 T̂t−sỹs

) /
T̂0 recursively.

With the deconvoluted impulse response functions of output and capital to a one-time

unit transitory temperature shock at hand, we use Proposition 1 and obtain the corre-

sponding shocks ẑt, ∆̂t. We then identify ζs = ẑs and δs = ∆̂s/∆0.

In practice, we face two additional challenges. We address both of them by imposing

a smooth functional form for our structural damage function. We constrain ζs, δs to be of

the form A
(
e−Bs − e−Cs).

The first challenge that our constrained estimation addresses is that we can only esti-

mate the impulse response functions ŷt, k̂t up to a finite horizon. By contrast, Proposition

1 requires the entire impulse response function. We cannot simply set the capital impulse

response to 0 from year 11 onwards, as this would imply a large underlying capital wind-

fall gain for the economy. By constraining the shape of the structural damage functions,

we use our 10 data points to estimate 3 parameters per damage function.

The second challenge is to discipline the long-run effects of temperature shocks. By

constraining the structural damage functions, we ensure that the effects of transitory tem-

perature changes vanish in the very long run. If we estimated the structural damage

functions entirely unconstrained and with a longer horizon, temperature shocks could

potentially have longer-ranging but extremely imprecisely estimated effects. Therefore,

our approach is conservative in that it limits the long-run impact of a one-time transitory

temperature shock. In any case, as Figure 13 below makes clear, the deconvoluted GDP

impulse response fully mean-reverts to 0 after 10 years.
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Hence, instead of exactly inverting the model, we estimate A, B and C for ζs, δs sep-

arately using Ordinary Least Squares (OLS) to minimize the squared deviations from the

equations in Proposition 1 for the first 10 years only.

4.5 Estimation Results

Figure 13 shows our estimation results. The panels in column (a) display the output (i)

and capital (ii) responses to internally persistent temperature shocks, in the model and

in the data. By construction, these responses account for the persistent increase in global

temperature levels in response to global temperature shocks as estimated in the data (see

Figure 9). The dashed lines are the impulse responses as estimated in Section 3. The

solid lines show the corresponding responses in the estimated model. Our model closely

tracks the empirical responses. Of course, the fit of the model relies on our constrained

functional form: if we did not constrain the damage function, the fit would be one-to-one.

The dashed lines in column (b) show the deconvoluted responses of output and cap-

ital that we use for estimation. These are the responses to a one-time transitory global

temperature shock of 1°C . As expected, the output and capital responses are smaller,

given the considerable degree of internal persistence of the estimated global temperature

shock. However, they remain sizeable and peak at around -5%, respectively. The solid

lines show again the model fit under our constrained functional form.

Finally, the panels in column (c) depict the estimated structural damage functions, ζs

and δs. The solid lines with circles represent the responses to a one-time transitory global

temperature shock of 1°C. It implies a short-run productivity loss of nearly 2.5% and an

increase in the capital depreciation rate of 0.3 p.p. Despite the temperature shock being

transitory, the impact on productivity and capital depreciation decays only slowly and

largely persists for up to 10 years. The bootstrapped confidence bands reflect the confi-

dence intervals around our empirical output and capital. The response of productivity is

more precisely estimated as the response of capital depreciation.

We illustrate the importance of isolating the output and capital responses to a transi-

tory shock by showing the damage functions if one mistakenly targeted the responses to a

persistent temperature shock (the dashed lines with circles). In that case, the productivity

effect exceeds 5% and capital depreciation approaches 0.6 p.p. in the medium run. Thus,
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Figure 13: Productivity and Capital Depreciation after Global Temperature Shocks

(a) Persistent T̂t (b) Transitory T̂t (c) Damage Functions

Notes: The figure shows our estimation results from matching the model impulse responses to the empirical
responses to global temperature shocks. The four left panels show the output and capital responses in
the data and the model. Column (a) shows the responses to persistent temperature shocks. Column (b)
shows the responses to transitory temperature shocks used in the estimation. Column (c) plots the implied
productivity and capital depreciation shocks, together with 68% confidence intervals (shaded area) for the
transitory case based on 1000 bootstrap draws from the empirical output, capital and temperature IRFs.

when constructing counterfactual paths due to global warming, it is crucial to correctly

cumulate the effects to transitory rather than persistent temperature shocks. Otherwise,

the impacts of climate change would be overstated.

How do the productivity and capital depreciation effects of global temperature shocks

compare to previous estimates? Answering this question is challenging because little

work directly estimates the impact of global temperature shocks. We can compare our

estimates to outcomes of structural models that build up from micro-level estimates of

the impact of extreme events. For instance, Bilal and Rossi-Hansberg (2023) find that a

permanent 1°C rise in global mean temperature implies a 1% decline in TFP and a 0.3

p.p. rise in the capital depreciation rate for the United States. Our estimates for persistent

temperature shocks—closer to a permanent shock—are of the same order of magnitude
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though larger for productivity, likely reflecting that the United States is more resilient to

extreme events than lower-income countries.

How do the productivity and capital depreciation effects of global temperature shocks

compare to those associated with local temperature shocks? Given that the empirical

responses are substantially larger in the data for global temperature shocks (Figure 7),

such shocks likely also imply larger damages. To answer this question quantitatively,

we repeat our estimation but targeting the impulse response functions following local

temperature shocks.

Figure 14: Productivity and Capital Depreciation after Local Temperature Shocks

(a) Persistent T̂t (b) Transitory T̂t (c) Damage Functions

Notes: The figure shows our estimation results from matching the model impulse responses to the empir-
ical responses to local temperature shocks. The four left panels show the output and capital responses in
the data and the model. Column (a) shows the responses to persistent temperature shocks. Column (b)
shows the responses to transitory temperature shocks used in the estimation. Column (c) plots the implied
productivity and capital depreciation shocks, together with 68% confidence intervals (shaded area) for the
transitory case based on 1000 bootstrap draws from the output, capital and temperature IRFs.

Figure 14 displays the productivity and capital depreciation effects of local tempera-

ture shocks. The productivity effect of local temperature shocks is five times smaller than

under global temperature shocks. The impact response of capital depreciation is some-
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what larger but vanishes immediately, so that the cumulated impact is substantially lower

than under global shocks. We conclude that global temperature shocks have much larger

effects on economic fundamentals.

5 The Welfare Impact of Climate Change

In this section, we use our estimated model to evaluate the consequences of climate

change for welfare and the SCC.

5.1 Representing Climate Change

To evaluate the consequences of climate change, our first step is to construct a path for

global mean temperature. We choose 2024 as our baseline year t = 0. Our central warm-

ing scenario is one where the world warms by 3°C above pre-industrial levels by 2100,

after which temperature asymptotes to 3.3°C above pre-industrial levels in the very long-

run. This scenario is conservative since the IPCC considers business-as-usual to imply over

4°C of warming by 2100 (Lee et al., 2023). We calibrate an exponential convergence such

that the warming path matches these two targets and denote by T̂t = Tt − T0 the corre-

sponding path. Crucially, given that the world has warmed by approximately 1°C since

pre-industrial times, such a scenario implies 2°C of additional warming since t = 0 (2024)

by year t = 76 (2100).

To highlight the central role of global temperature shocks, we construct two counter-

factuals. In the first counterfactual, we start in steady-state and use the structural damage

functions estimated under global temperature shocks to construct changes in productivity

and capital depreciation:

Zglobal
t = Z0 exp

(∫ t

0
ζ

global
s T̂t−sds

)
∆global

t = ∆0 exp
(∫ t

0
δ

global
s T̂t−sds

)
,

where the estimates for ζ
global
s , δ

global
s correspond to the impact of a one-time, transitory

global temperature shock (Figure 13(c), solid line with circles). In the second counterfac-

tual, we start in steady-state and use the structural damage functions estimated under
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local temperature shocks to construct changes in productivity and capital depreciation:

Zlocal
t = Z0 exp

(∫ t

0
ζlocal

s T̂t−sds
)

∆local
t = ∆0 exp

(∫ t

0
δlocal

s T̂t−sds
)

,

where the estimates for ζlocal
s , δlocal

s correspond to the impact of a one-time, transitory

local temperature shock (Figure 14(c), solid line with squares).

We then compare allocations and welfare in an economy that warms according to T̂t,

to allocations and welfare in an economy in which T̂t ≡ 0. We represent welfare losses

from climate change as an equivalent percent decline in steady-state consumption. That

is, a 1% welfare loss under climate change means that households would be as well off

if there was no climate change, but they permanently gave up 1% of their steady-state

consumption. To solve for counterfactuals, we emphasize again that we use standard

global numerical methods to obtain the global solution—we only use log-linearization

for estimation.

To calculate the SCC, we construct analogues of these quantities for global and lo-

cal damage functions following a one-time pulse of a single ton of CO2 as described in

Section 4.3. Importantly, the SCC calculations are independent from the global warming

scenario because they rely on the temperature response to a given CO2 pulse {T̂SCC
t }t≥0.

Conversely, the welfare calculations are independent from {T̂SCC
t }t≥0.

5.2 Welfare and the SCC

Figure 15 presents our main results. Panel (a) depicts the path of global mean tempera-

tures. Panel (b) reveals that output starts dropping rapidly when global mean tempera-

tures rise, relative to a world that is not warming. By 2050, output declines by 30%. In

2100, output is 50% below what it would have been without climate change. This substan-

tial decline in output reflects accumulated productivity losses that eventually reach 30%

as well as a steep 4 p.p. rise in the capital depreciation rate, representing a 50% increase.

Panel (c) highlights the combined adverse impact of lower productivity and higher

depreciation rates on capital accumulation. Initially, investment rises as households an-

ticipate lower income going forward and therefore save, following standard permanent

income logic. Rapidly however, capital starts decumulating under the combined pressure
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Figure 15: Transitional Dynamics Under Climate Change

Notes: The figure shows the transitional dynamics of our estimated model under our scenario where the
worlds warms by 3°C above pre-industrial levels by 2100. The blue solid lines represent transitional dy-
namics when we estimate the model based on global temperature shocks, together with 68% confidence
intervals (shaded blue). The dotted blue lines represent transitional dynamics when we only use produc-
tivity damages under global temperature shocks. The dashed red lines represent transitional dynamics
when we use only productivity shocks estimated under local temperature shocks, together with 68% confi-
dence intervals (shaded red). Confidence intervals based on 1000 bootstrap draws from output, capital and
temperature IRFs.

of lower output and higher depreciation. By 2100, capital is 60% below what it would

have been without climate change. Panel (d) reveals that consumption declines as much

as output, eventually exceeding a 50% loss in the long run.

This substantial decline in consumption translates into a large welfare loss. Panel

(e) shows that the welfare impact of climate change amounts to a 31% welfare loss in

consumption equivalent percent. This welfare loss exceeds the consumption impact as

households discount but value future declines in consumption as well. As temperature
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keeps rising, welfare continues to decline and reaches a 52% loss.

Our results indicate that the impact of climate change is substantial. In welfare terms,

the cost of climate change is 640 times the cost of business cycles, or ten times the cost

of moving from current trade relations to complete autarky. Perhaps most strikingly, in

terms of output, capital, consumption, and thus welfare, climate change is comparable in

magnitude to the effect of fighting a major war domestically. However, climate change is

permanent. Thus, the losses from living in a world with climate change relative to a world

without it are comparable to fighting a major war domestically, forever.

Our results also shed light on how much economic growth was missed because of

past climate change. When we start the economy in 1960 and feed in the historical path

of warming until 2024, our counterfactuals indicate that world GDP per capita would

be 37% higher today had no warming occurred between 1960 and 2024 instead of the

actual 0.75°C increase in global mean temperatures. This difference translates into a 29%

reduction in the annual growth rate of the world economy since 1960 (half a percentage

point).

Panel (f) uses our structural damage function to construct the SCC. We obtain a SCC

of $1,056/tCO2. This value is more than six times larger than the $185/tCO2 value in

Rennert et al. (2022). There are two possible reasons why we obtain a large SCC and sub-

stantial welfare costs of climate change. The first possible reason is our focus on global

temperature shocks. The second possible reason is that we include damages to produc-

tivity and capital depreciation, rather than productivity alone as in most previous work.

We demonstrate that our focus on global temperature shocks is the main driver of our

conclusions. We do so by re-estimating our model based on the impact of local temper-

ature shocks on productivity only, consistently with previous research. In that case, and

consistently with previous estimates (Nordhaus, 1992; Dell et al., 2012; Burke et al., 2015;

Nath et al., 2023), Panels (b)-(e) show that climate change then implies present value wel-

fare costs of 4% and the SCC is $151/tCO2, just below the value in Rennert et al. (2022).

When we estimate our model based on the impact of global temperature shocks on pro-

ductivity only, we obtain a welfare loss of 22% and a SCC of $842/tCO2, five to six times

larger than with local shocks. Including damages to capital depreciation further increases

these values to our main results. Our bootstrapped confidence intervals highlight the un-
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certainty around these point estimates. The 68% confidence interval for the SCC ranges

from $723 to $1,451/tCO2. Despite non-trivial uncertainty, even the lower bound of that

confidence interval is several times larger than conventional SCC estimates.

5.3 Sensitivity

Given the sizeable magnitude of our results, we investigate which parameters may be

driving them. Figure 16 displays a sensitivity analysis with respect to two key parameters:

the discount rate ρ and 2100 global mean temperature.

Panel (a) shows the welfare losses as a function of the discount factor ρ, and panel

(b) shows the corresponding SCC. The solid line depicts losses when using global tem-

perature shocks to estimate our model, and the dashed line depicts losses when using

local temperature shocks. As expected, a higher discount rate lowers welfare losses and

the SCC: households then value damages that are far in the future by less. Our baseline

discount rate value of ρ = 0.02 is consistent with Rennert et al. (2022) and with the sec-

ular decline in interest rates. However, even at much higher discount rates—up to 0.04

or 0.05—we still obtain sizable losses in excess of 20% in consumption equivalent. The

corresponding SCC remains two to three times as large as the higher end of previous esti-

mates. By contrast, as we approach very low discount rates consistent with Stern (2006),

welfare losses exceed 40% and the SCC rises above $3,000/tCO2. Welfare losses are less

sensitive to the discount rate than the SCC because welfare losses represent an annualzed

flow of losses, while the SCC is a discounted stock valuation as shown in equation (8).

Panels (c) and (d) show welfare losses and the SCC when we vary 2100 temperature

relative to pre-industrial levels. Of course, in Panel (f), the SCC is independent from the

warming scenario because it only depends on the temperature response to a CO2 pulse.

Welfare losses under 20% materialize only at very low warming scenarios of 1.5°C

since pre-industrial levels by 2100. The IPCC evaluates that the world is on track for

4°C above pre-industrial levels under business as usual: global mean temperatures al-

ready largely exceed 1°C since pre-industrial levels, and some estimates indicate that

2023 reached 1.48°C since pre-industrial levels. By contrast, more pessimistic scenarios

under which global mean temperatures reach 5°C since pre-industrial levels in 2100 lead

to present value welfare losses of 60%.
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Figure 16: Welfare and the Social Cost of Carbon under Alternative Choices

Notes: The figure shows the sensitivity of our model-implied welfare costs and social cost of carbon, both
in 2024, with respect to the discount rate (ρ) and the 2100 global mean temperature. The solid blue line
depicts the effects when estimating the model estimated using global temperature shocks (baseline). The
dashed red line depicts the effects when estimating the model with local temperature shocks.

Our sensitivity analysis indicates that substantial climate damages occur over a wide

range of specification choices. We conclude that climate change poses a substantial threat

to the world economy.
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6 Conclusion

In this paper, we demonstrate that the impact of climate change on economic activity is

substantial. We leverage natural climate variability in global mean temperature to obtain

time-series estimates that are representative of the overall impact of global warming. We

find that a 1°C rise in global temperature causes global GDP to persistently decline, with

a peak loss at 12%. This large effect is due to an associated surge in extreme climatic

events. By contrast, local temperature shocks used in the traditional panel literature lead

to a minimal rise in extreme events and to much smaller economic effects. Together, our

results imply a SCC of $1,056/tCO2 and a 31% welfare loss from a moderate warming

scenario. These effects are comparable to having a major war fought domestically, forever.

Not only do our results indicate that climate change represents a major threat to the

world economy, they also have salient consequences for decarbonization policy. Many

decarbonization interventions cost between $27 and $95 per ton of CO2 abated (Bistline

et al., 2023). A conventional SCC value of $151/tCO2 implies that these policies are cost-

effective only if governments internalize benefits to the entire world, as captured by the

SCC. However, a government that only internalizes domestic benefits values mitigation

benefits using a Domestic Cost of Carbon (DCC). The DCC is always lower than the SCC

because damages to a single country are less than to the entire world. For instance, under

conventional estimates based on local shocks, the DCC of the United States is $30/tCO2,

making unilateral emissions reduction prohibitively expensive. Under our new estimates

however, the DCC of the United States becomes $211/tCO2 and thus largely exceeds

policy costs. In that case, unilateral decarbonization policy is cost-effective for the United

States.
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A Empirics

A.1 Data

A.1.1 Economic Data

We source economic information on GDP, population, consumption, investment and pro-

ductivity for a comprehensive selection of countries around the world from the Penn

World Tables (PWT; Feenstra et al., 2015). Our main output measure is real GDP per

capita from the national accounts (rgdpna/pop). For our country comparisons by in-

come, we use (expenditure-side) real GDP per capita at chained PPPs (rgdpe/pop). For

capital, we use the capital stock from national accounts (rnna). Investment, we compute

using data on capital and capital depreciation (delta) based on the capital accumulation

equation It = Kt − (1 − δt)Kt−1. For total factor productivity, we also use the measure

based on national accounts (rtfpna). We compute a measure of labor productivity based

on output and employment data (rgdpna/emp).1

The PWT data set is commonly used in the literature and of high quality. However,

as an alternative, we also use data from the World Bank. One limitation of both of these

data sets is that they only go back to the 1950s or 1960s. To extend our analysis to a longer

historical sample period, we therefore also include data from the Macro-history Database

(Jordà et al., 2017), which features high-quality economic data for 18 developed countries

starting in the late 19th century.

A.1.2 Climate Data

Gridded temperature datasets. Our primary gridded temperature dataset is Berkeley

Earth, due to its geographic coverage, temporal coverage, and update frequency.

We obtain gridded temperature anomalies (using air temperatures at sea ice) at a daily

and monthly frequency between 1850 and 2022 from Berkeley Earth (2023), at a resolution

of 1◦ × 1◦ latitude-longitude grid. Temperature anomalies are deviations from the clima-

tology, which is measured as the 1951-1980 mean temperature (Rohde and Hausfather,

1We use employment as a proxy for the labor input because the data on average hours is not very well
populated.
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2020). Grid-level temperature levels are constructed by adding the grid-level climatology

to the grid-level anomaly series.

We also obtain gridded estimates of temperature, wind, and precipitation at a daily

frequency between 1901 and 2019 from the Inter-Sectoral Impact Model Intercomparison

Project (ISIMIP), at a 0.5◦ spatial resolution (Lange et al., 2023).

To assess the sensitivity of the results to the gridded temperature data used, we obtain

alternate, prominent datasets used in the literature. We obtain gridded temperature levels

(surface air temperature) at a monthly frequency between 1948 and 2014 from the Prince-

ton Global Forcing Dataset (version 2) constructed by Sheffield et al. (2006), a later version

of which was used, for instance, by Nath et al. (2023). Additionally, we obtain the grid-

ded temperature levels (surface air temperatures) at a monthly frequency between 1900

and 2014 from the Willmott and Matsuura, University of Delaware Dataset (version 4.01)

(Matsuura and National Center for Atmospheric Research Staff, 2023), earlier versions of

which were used, for instance, by Dell et al. (2012) and Burke et al. (2015).

Aggregation of gridded temperature datasets. To aggregate the gridded temperature

datasets to the global or country level we consider two different type of weights. One

approach is to use area weights. Specifically, we use the area of the grid, calculated us-

ing the latitude and longitude. Alternatively, we use population weights. In that case,

we use the grid-level population count in 1000 as weights, obtained from the Center for

International Earth Science Information Network (CIESIN), Columbia University (2018).

Global temperatures. We obtain land and ocean surface temperature anomalies (in de-

grees Celsius) at an annual frequency between 1850 and 2022 from NOAA National Cen-

ters for Environmental Information (2023a). Temperature anomalies are deviations from

the climatology, which is measured as the 1901-1000 mean temperature, 13.9 degree Cel-

sius (NOAA National Centers for Environmental Information, 2023b). Temperature levels

are constructed by adding the climatology to the anomaly series.

We also obtain the combined land-surface air and sea-surface water temperature

anomalies (in degrees Celsius) at an annual frequency between 1880 and 2022 from

Lenssen et al. (2019) and NASA Goddard Institute for Space Studies (2023). Tempera-
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ture anomalies are deviations from the climatology, which is measured as the 1951-1980

mean temperature, approximately 14 degree Celsius (NASA Earth Observatory, 2020).

Temperature levels are similarly constructed by adding the climatology to the anomaly

series.

As a quality check of the gridded temperature data, we compute population- and area-

weighted global temperature measures and compare them to the official measures from

NOAA and NASA. Note that both official measures follow an area-weighted aggregation

scheme. Reassuringly, aggregating the Berkeley Earth gridded temperature data using

area weights to obtain a global temperature measure produces a series that is virtually

perfectly correlated with both the NOAA and NASA global temperature series: we find

that the measures based on all these different data sets align very well, as shown in Figure

A.1.

Figure A.1: Global Average Temperature Since 1950

13
.5

14
.0

14
.5

15
.0

15
.5

Te
m

pe
ra

tu
re

 (°
C

)

1960 1980 2000 2020

Year

NOAA
NASA
Berkeley Earth

Global Average Temperature

Notes: The figure shows the evolution of global average temperature. The NOAA and NASA measures
are constructed by adding the climatology to the official anomaly series. The Berkeley Earth measure is
constructed by first, obtaining grid-level temperature levels by adding the grid-level climatology to the
grid-level anomaly series, and second, aggregating the grid-level temperature levels using area weights. We
plot the Berkeley Earth series starting 1956, following which the percentage of monthly grid-level missing
observations is consistently below ≈2%.

Country-level temperatures. We use the Berkeley Earth gridded temperature data to

construct population- and area-weighted country-level mean temperatures. In our anal-
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yses, we use population-weighted temperature as the baseline, however, using area-

weighted measures produces very similar results. To assess the sensitivity of the results

with respect to the gridded temperature data used, we similarly compute the population-

and area-weighted country-level mean temperatures using the Princeton Global Forcing

Dataset and the University of Delaware Dataset. We find that the results are consistent

across different temperature datasets.

Extreme climatic events. We use the ISIMIP gridded estimates of temperature, wind,

and precipitation at a daily frequency between 1901 and 2019 to construct extreme events

indicators for each latitude-longitude grid. To define a threshold for extreme events, we

use the percentiles of the distribution of the variables between 1901 and 1930, and define

an extreme event as one where the realization of a variable was above a given percentile

of its distribution. Specifically, we use the percentiles of the worldwide distribution to

construct “absolute” extreme events indicators, and the percentiles of a country’s distri-

bution for “relative” indicators. We use the relative indicators as our baseline, however,

our results are robust to using the absolute indicators.

To aggregate the variables across the grids to construct country-level measures, we

use two methods. First, we construct the daily average of the variable for the country, and

then compute the fraction of days in the year when the variable was above the threshold

percentile (i.e., “country-level” extreme events indicator). Alternatively, we also compute

the fraction of days in the year when the variable was above the threshold percentile at

the grid-level, and then aggregate this indicator for the country (i.e., “cell-level” extreme

events indicator). Of course, the threshold percentile changes across the definitions: for

the former, we use the distribution of daily country-level averages, and for the latter, the

distribution of daily grid-level observations between 1901 and 1930. Note that similar to

the aggregation of gridded temperature datasets, we consider both area- and population-

weights in both methods above. We use the country-level, area-weighted indicators as

our baseline. However, the results are robust to using our alternative measures (cell-level

and/or population-weighted).
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A.2 Additional Figures and Tables

In this appendix, we present some additional figures and tables to complement the anal-

ysis in the main text.

A.2.1 Statistical Properties of Global Temperature Shocks

Serial correlation. Figure A.2 shows the autocorrelation function of the global temper-

ature shock. The shocks are weakly autocorrelated. This is not too surprising, given that

we construct the shocks as multi-step forecast errors. To account for this serial correlation,

we therefore include two lags of the global temperature shock in our local projections.

However, as we show in Appendix A.4, our results are robust with respect to the number

of lags for the temperature shock.

Figure A.2: Autocorrelation of Global Temperature Shock

-0
.4

0
-0

.2
0

0.
00

0.
20

0.
40

Sa
m

pl
e 

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25 30

Lag

Notes: The figure shows the autocorrelation function of global temperature shocks, together with the 95%
confidence bands, computed based on Bartlett’s formula for MA(q).

Forecastablility. A desirable feature of “shocks” is that they should not be forecastable

by past information (Ramey, 2016). In our context, if global tempreature shocks were fore-

castable by economic variables, this could point to reverse causality or other endogeneity

threats. Thus, we check whether our temperature shocks are forecastable, considering

a wide set of past macroeconomic or financial variables in a series of Granger-causality
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tests. To account for the long and variable lags between emissions and warming, we con-

servatively include up to 8 years worth of lags.2 Table A.1 reports the results. We find no

evidence that macroeconomic or financial variables have any power in forecasting global

temperature shocks. None of the selected variables Granger cause the series at conven-

tional significance levels. The joint test is also insignificant.

Table A.1: Granger-causality Tests

Variable p-value

Real GDP 0.494
Population 0.801
Brent price 0.756
Commodity price index 0.664
Treasury 1Y 0.830
Overall 0.825

Notes: The table shows the p-values of a series of Granger causality tests of the global temperature shock
series using a selection of macroeconomic and financial variables. Non-stationary variables are transformed
to growth rates. We allow for up to 8 lags.

A.2.2 Accounting for the Persistence of Temperature Shocks

As discussed in the paper, global temperature shocks lead to a persistent increase in tem-

perature levels, that is in fact much more persistent than the shock itself: Figure 9 in the

main text shows that global temperature shocks lead to an increase in average local tem-

perature that tends to persist over our entire impulse horizon, albeit at a lower level than

the initial shock of 1°C . An interesting question is then how global mean temparature

responds. To this end, we estimate the response of global mean temperature to global

temperature shocks using a simple local projection. The results are shown in Figure A.3.

Global mean temperature increases persistently after the shock and the response turns

out to be quite similar to the average response of local temperature. If at all, the response

turns out to be slightly more pronounced, which could reflect the fact that global mean

temperature also includes sea surface temperature.

2We would like to ideally include 10 lags (= our impulse horizon) but unfortunately in our baseline
sample we do not have enough degrees of freedom to do so.
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Figure A.3: The Effect of Global Temperature Shocks on Temperature Levels
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Notes: The figure shows the impulse responses of global mean temperature to a global temperature shock,
estimated based on (2). The solid line is the point estimate and the dark and light shaded areas are 68 and
90% confidence bands, respectively.

Recall from Figure 9 in the main text, also local temperature shocks lead to persistent

increases in local temperature. However, the increase turns out to be slightly less persis-

tent than for global temperature shocks. To better compare the effects of global and local

temperature shocks, we thus estimate the effects of local temperature shocks on real GDP,

imposing the same persistence of the local temperature response as for global tempera-

ture shocks. We do so using the Sims (1986) approach.

The results are shown in Figure A.4. The effects of local temperature shocks are in this

case slightly more pronounced than in our baseline, depicted in Figure 8. Importantly,

however, the effects of the global temperature shocks are still by a magnitude larger that

for local temperature shocks. Thus, the slight difference in persistence cannot account for

the differential impacts of global and local temperatures shocks.
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Figure A.4: The Effects of Local and Global Temperature Shocks
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Notes: The figure shows the impulse responses of real GDP per capita to a local temperature shock, esti-

mated in the panel using (3), against the effects of a global temperature shock. To make the shocks more

comparable, we impose that the local temperature shock has the same effect on local temperature levels as

global temperature shocks using the Sims (1986) method. The solid lines are the point estimates and the

dark and light shaded areas and dashed and dotted lines are 68 and 90% confidence bands, respectively.

A.2.3 An LP-IV Approach

Our baseline specifications take the global temperature shock as given and do not take

estimation uncertainty in the shock into account. To assess the potential role of estima-

tion uncertainty in the shock, we alternatively consider a local-projection-instrumental

variable approach. Specifically, we use the global temperature shock as an instrument for

changes in global temperature. The specification then reads:

yi,t+h − yi,t−1 = αi + θh
0∆Tt + x′tβ + x′i,tγ + εi,t+h,

where we instrument ∆Tt with Tshock
t . To account for the serial correlation in temperature

changes, we also control for two lags of temperature changes, on top of our baseline

controls.

Importantly, as discussed in Wooldridge (2002), generated instruments do not suffer
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from the inference problem associated with generated regressors.

The results are shown in Figure A.5. The results are very similar to our baseline es-

timates, both in terms of point estimates and coverage of the confidence bands. This

suggests that accounting for estimation uncertainty in the global temperature shock is

not that consequential in our application.

Figure A.5: Local Projections-Instrumental Variable Approach
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Notes: The figure shows the impulse responses of real GDP per capita to a global temperature shock,
estimated based on the panel local projection-instrumental variable approach, instrumenting global tem-
perature changes with the global temperature shock. The solid black line is the point estimate and the dark
and light shaded areas are 68 and 90% confidence bands, respectively.

A.2.4 Time Fixed Effects and Correlated Temperature Shocks

In this appendix, we shed further light on the role of time fixed effects. In Figure A.6(a),

we zoom in on the comparison between the impulse responses of local temperature

shocks from the specification with time fixed effects to the baseline specification with-

out time fixed effects. The responses from the local temperature shock model with time

fixed effects are strikingly close to the baseline with global controls. Furthermore, the

coverage of the confidence bands is also comparable. Overall, these results indicate that

our controls successfully account for common shocks.
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Figure A.6: The Role of Time Fixed Effects

(a) Global controls versus time fixed effects
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Notes: The figure shows the impulse responses of real GDP per capita. Panel (a) shows the responses of
a local temperature shock and compares the specification with global controls (3) to the specification with
time FE (4). The black line corresponds to the specification with global controls, the red line to the specifica-
tion with time fixed effects. Panel (b) shows the impulse responses to correlated temperature shocks from
a specification controlling for time fixed effects. In all subfigures, the solid lines are the point estimates and
the dark and light shaded areas and dashed and dotted lines are 68 and 90% confidence bands, respectively.

To further mitigate concerns that other unobserved global factors may confound our

results, we exploit regional variation in temperature. We construct country-level temper-

ature shocks that also incorporate external temperature. For each country, we compute a

shock that is a weighted average of its own temperature shock and all other temperature

shocks in the world, weighted by country distance with closer countries getting a higher

weight. In this way, we are able to obtain correlated temperature shocks that still vary by

country. This allows us to control for time fixed effects—something we cannot do in the

specification with global temperature shocks.

The results are shown in Figure A.6(b). Real GDP per capita falls substantially after

such correlated temperature shocks, approaching -10% at its peak. Thus, the effects turn

out to be again much larger than for local temperature shocks and the responses are over-

all quite similar to the estimated effects for global temperature shocks. Importantly, we

reach this conclusion based on a specification with time fixed effects, flexibly controlling

for any unobserved common shocks. We conclude that global temperature shocks lead to

much larger economic effects than local temperature shocks.
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A.3 Accounting for Reverse Causality

In this appendix, we describe how we account for reverse causality. We build on the

deconvolution ideas in Sims (1986). We start by describing deconvolution without reverse

causality. Then we show how to use deconvolution to handle reverse causality.

For expositional purposes, we omit additional controls and residuals from the notation

to focus on the core idea. Adding controls and residuals would only add notation without

changing any of the results. We estimate the relationship between a temperature shock T̂t

at time t and output:

∆yt+h = θhT̂t,

where Tt denotes the temperature shock, and ∆xt+h ≡ xt+h − xt−1. Temperature Tt has

some internal persistence too:

Tt+h − Tt−1 = ΓhT̂t.

A.3.1 No Reverse Causality

We are interested in the structural coefficients Θh that describe the effect of a one-time

temperature change T̂t on GDP yt+h periods ahead. The structural relationship is thus:

∆yt+h = ΘhT̂t.

However, in the data temperature does not revert back to 0 after period 1. Given this inter-

nal persistence in temperature, we thus observe the path of GDP after damages cumulate

over time:

∆yt+h =
h

∑
k=0

Θh−k∆Tt+k =

(
h

∑
k=0

Θh−kΓk

)
T̂t.

Hence, we measure θ, which is related to Θ through:

θh =
h

∑
k=0

Θh−kΓk.
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We can solve for Θ recursively:

• Initial horizon. We have θ0 = Θ0Γ0, and so Θ0 = θ0
Γ0

.

• Subsequent horizons. By recursion, we are given (Θk)k≤h−1. We have:

θh = Θhγ0 +
h

∑
k=1

Θh−kΓk = Θhγ0 +
h−1

∑
k=0

ΘkΓh−k =⇒ Θh =
θh − ∑h−1

k=0 ΘkΓh−k

Γ0
.

A.3.2 Reverse Causality

We now introduce a feedback of GDP on temperature through emissions. Denote by E the

baseline level of emissions. Consistently with standard production function structures,

we posit, in log changes:

∆et = η∆yt,

where η is the so-called “Okun elasticity” of emissions to GDP over the business cycle,

and ranges from 0.5 to 1.

The relationship between the level of emissions and temperature going forward is

known (see for instance Dietz et al., 2021). After an exegenous increase in emissions, but

in the absence of an exogenous temperature shock, climate models imply:

∆Tt+h = ϕh∆Et = ηEϕh∆yt ≡ ψh∆yt,

where Et = E × et.

Thus, we write the full temperature process as the outcome of both exogenous tem-

perature shocks and past economic activity. Γh is the temperature response to an own

shock absent any emissions feedback. Θh denotes economic damages absent any emis-

sions feedback. We obtain the joint system:

∆yt+h =
h

∑
k=0

Θh−k∆Tt+k ∆Tt+h = ΓhT̂t +
h

∑
k=0

ψh−k∆yt+k

As before, we measure the local projection θh of output ∆yt+h on the initial temperature
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shock T̂t: ∆yt+h = θhT̂t. We also measure the local projection γh of temperature ∆Tt+h on

the initial temperature shock T̂t: ∆Tt+h = γhT̂t.

Thus, we obtain as system of equations with unknowns (Θ, Γ) given (θ, γ) and ψ:

θh =
h

∑
k=0

Θh−kγkT̂t γh = ΓhT̂t +
h

∑
k=0

ψh−kθkT̂t.

As before, we solve for (Θ, Γ) recursively:

• Initial horizon. We have θ0 = Θ0γ0 and γ0 = Γ0 + ψ0θ0. Therefore, we obtain:

Θ0 = θ0
γ0

and Γ0 = γ0 − ψ0θ0.

• Subsequent horizons. By recursion, we are given (Θk, Γk)k≤h−1 and (Θk, Γk)k≤h.

We have:

θh = Θhγ0 +
h

∑
k=1

Θh−kγk = Θhγ0 +
h−1

∑
k=0

Θkγh−k γh = Γh +
h

∑
k=0

ψh−kθk

Therefore, we obtain:

Θh =
θh − ∑h−1

k=0 Θkγh−k

γ0
Γh = γh −

h

∑
k=0

ψh−kθk.

The deconvoluted GDP response is the same as without reverse causality. The only

difference lies in the implied GDP response after a temperature shock that follows

its own internal persistence.

• Implied GDP response. The implied GDP response after correcting for reverse

causality is thus:

θtrue
h =

h

∑
k=0

Θh−kΓk =
h

∑
k=0

ΘkΓh−k.

Practical implementation. In practice, we need a sequence ψ. We construct a central

case, and some alternatives for robustness.

The central case uses the following parameters. We use η = 1: emissions move one-

for-one with output. Average world emissions during our 1960-2019 sample are E =
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22.5 Gt/y.3 The temperature response in Celsius to a 100 Gt pulse in Dietz et al. (2021) is

well-approximated by:

100 × ϕh = a100 × (e−b×h − e−c×h) + d100 × (1 − e− f×h)

a100 = 0.1878, b = 0.083, c = 0.2113, d100 = 0.1708, f = 0.2113.

Then: ψh = η × E × ϕh.

We consider combinations of the following other possible cases (including the base-

line) that correspond to alternative Okun elasticities, and the lower and upper end

of the temperature response in Dietz et al. (2021): η′ = 0.5; (a′, d′) = 0.5 × (a, d),

(a′, d′) = 2 × (a, d).

A.4 Additional Robustness Checks

In this appendix, we perform a number of additional sensitivity checks on the effect of

global temperature shocks based on our panel local projections.

Figure A.7 shows the results. In Panels (a)-(b), we assess the sensitivity with respect to

the GDP and temperature data used. Using real GDP per capita from the PWT or from the

WDI produces very similar results. Similarly, using aggregated global mean temperature

data from the Berkeley Earth dataset or off-the-shelf measures from NASA or NOAA

produces virtually identical results.

In Panels (c)-(d), we study the sensitivity with respect to the number of lags included

for real GDP and temperature shocks. When varying the lag order of the dependent

variable, we keep the lag order of our temperature shock at the basline value and vice

versa. Our results turn out to be very robust with respect to the lag order. Recall, in the

main text, we show that our results even survive when we control up to 10 lags of real

GDP.

In Panel (e), we perform a more extensive assessment of how constructing the tem-

perature shocks affects the results. Using simple one-step ahead forecast errors, using the

one-sided HP filter or the simple 2-year difference proposed in Hamilton (2018) produces

qualitatively very similar results.

3See https://ourworldindata.org/co2-emissions.
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Overall, these results further illustrate the robustness of our finding that global tem-

perature shock lead to a sizeable, persistent and statistically significant fall in economic

output that is by a magnitude larger than the estimates in the literature for local temper-

ature shocks.
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Figure A.7: Sensitivity of the Average Effect of Global Temperature Shocks
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(c) Lag order dependent variable
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(d) Lag order temperature shock
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(e) Construction of temperature shock
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Notes: The figure assesses the sensitivity of the effects of global temperature shocks on real GDP per capita
to a global temperature shock, with respect to data choices, the number of controls included, and the con-
struction of the temperature shock. In all subfigures, the solid line is the point estimate and the dark and
light shaded areas are 68 and 90% confidence bands, respectively.
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B Model

Our solution to the neoclassical growth model is entirely standard and we present it for

completeness.

B.1 Equilibrium

The resource constraint is:

K̇t = ZtKα
t − Ct − ∆tKt.

Firm behavior and market clearing implies rt + ∆t = αZtKα−1
t and wt = (1 − α)Ka

t . The

Euler equation is:

Ċt = γ−1(αZtKα−1
t − ∆t − ρ)Ct.

In steady-state,

r = αZKα−1 = ρ + ∆ =⇒ K =

(
αZ

ρ + ∆

) 1
1−α

C = ZKα − ∆K.

B.2 Linearization

We denote steady-state variables without time subscripts. We denote deviations from

steady-state with hats. We linearize the resource constraint:

dK̂t

dt
= (αZKα−1 − ∆)K̂t − Ĉt + ẐtKα − ∆̂tK

= ρK̂t − Ĉt + Yẑt − K∆̂t.
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where we denoted ẑt = Ẑt/Z. Next, we linearize the Euler equation:

dĈt

dt
=

C
γ

(
−α(1 − α)ZKα−2K̂t + αKα−1Ẑt − ∆̂t

)
=

C
γ

(
− (1 − α)r

K
K̂t + rẑt − ∆̂t

)
.

We define:

Xt =

K̂t

Ĉt

 , st =

 ẑt

∆̂t

 .

We can summarize the linearized resource constraint and Euler equation as:

Ẋt = AXt + St,

where:

A =

 ρ −1

− (1−α)rC
γK 0

 , St = Bst , B =

Y −K
rC
γ −C

γ

 .

We have an initial condition K̂0, and a terminal condition Ĉt → 0. We now apply standard

Blanchard-Kahn arguments. Let A = M−1DM, with D diagonal. For determinacy we

require that parameters are such that D has a positive eigenvalue in the top left position,

and a negative eigenvalue in the bottom right position. We denote by Xt = MXt, so that

Ẋt = DXt + MSt.

We then solve explicitly for Xt:

Xt = etD
[
X0 +

∫ t

0
e−sD(MSt)ds

]
.
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Hence, long-run stability requires the top entry of the bracket to be zero as time grows.

That is:

0 = X0,1 +
∫ ∞

0
e−sD1(MSs)1ds.

Therefore,

M1•X0 = −
∫ ∞

0
e−sD1 M1•Ssds.

We can thus solve for initial consumption:

Ĉ0 = − 1
M12

[
M11K̂0 +

∫ ∞

0
e−sD1 M1•Ssds

]
.

We denote εK = −M11
M12

, εS = − 1
M12

M1• and εS,s = e−sD1εS. We can write more compactly:

Ĉ0 = εKK̂0 +
∫ ∞

0
εS,sSsds.

Of course, this condition must hold at all times:

Ĉt = εKK̂t +
∫ ∞

0
εS,sSt+sds.

B.3 Model Inversion: Proof of Proposition 1

We substitute the solution for linearized consumption into the law of motion of capital:

dK̂t

dt
= (L11 − εK)K̂t + S1t −

∫ ∞

0
εS,sSt+sds.

Denote κ = −(L11 − εK) and St = S1t −
∫ ∞

0 εS,sSt+sds so that:

dK̂t

dt
= −κK̂t + St.
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Assuming we start in steady-state, we obtain:

K̂t = e−κt
∫ t

0
eκsSsds.

In percentage deviations:

K̂t

K
=

e−κt

K

∫ t

0
eκsSsds.

We can directly back out productivity shocks from the production function given move-

ments in output and capital:

Ŷt

Y
= ẑt + α

K̂t

K
.

We then use the capital accumulation equation to recover capital depreciation shocks. To

do so, we express:

∫ t

0
eκsSsds =

∫ t

0
eκs
(

S1s −
∫ ∞

0
εS,rSs+rdr

)
ds

=
∫ t

0
eκsS1sds −

∫∫ ∞

0
1[s ≤ t]εS,rSs+reκsdsdr

=
∫ t

0
eκsS1sds −

∫∫ ∞

0
1[s ≤ t]εSSs+reκs−D1rdsdr.

Changing variables to τ = s + r over r, we obtain

∫ t

0
eκsSsds =

∫ t

0
eκsS1sds − εS

∫∫ ∞

0
1[s ≤ t, s ≤ τ]Sτeκs−D1(τ−s)dsdτ

=
∫ t

0
eκsS1sds − εS

∫ ∞

τ=0
e−D1τSτ

∫ min{t,τ}

s=0
e(D1+κ)sdsdτ

≡
∫ t

0
eκsS1sds − εS

∫ ∞

τ=0
Jt,τSτdτ,

where we defined:

Jt,τ = e−D1τ
∫ min{t,τ}

s=0
e(D1+κ)sds = e−D1τ e(D1+κ)min{t,τ} − 1

D1 + κ
.
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Having estimated the productivity shocks, we can express:

St = St + ∆̂tS∆ St ≡ ẑt

Y
rC
γ

 S∆ ≡

−K

−C
γ

 .

Then, we write

∫ t

0
eκsSsds =

∫ t

0
eκsS1sds − εS

∫ ∞

τ=0
Jt,τSτdτ ++S∆,1

∫ t

0
eκs∆̂sds −

(
εSS∆

) ∫ ∞

0
Jt,s∆̂sds.

Hence, we have obtained that:

K̂t

K
= Kt(ẑ) + Jt,•∆̂•,

where

Kt(ẑ) =
e−κt

K

[∫ t

0
eκsS1sds − εS

∫ ∞

0
Jt,sSsds

]
Jt,s =

e−κt

K
[
S∆,11[s ≤ t]eκsds −

(
εSS∆

)
Jt,sds

]
.

This concludes the proof of Proposition 1.
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